Drosophila neuroblasts: a model for stem cell biology.

نویسندگان

  • Catarina C F Homem
  • Juergen A Knoblich
چکیده

Drosophila neuroblasts, the stem cells of the developing fly brain, have emerged as a key model system for neural stem cell biology and have provided key insights into the mechanisms underlying asymmetric cell division and tumor formation. More recently, they have also been used to understand how neural progenitors can generate different neuronal subtypes over time, how their cell cycle entry and exit are coordinated with development, and how proliferation in the brain is spared from the growth restrictions that occur in other organs upon starvation. In this Primer, we describe the biology of Drosophila neuroblasts and highlight the most recent advances made using neuroblasts as a model system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Stem Cells in Drosophila: Molecular Genetic Mechanisms Underlying Normal Neural Proliferation and Abnormal Brain Tumor Formation

Neural stem cells in Drosophila are currently one of the best model systems for understanding stem cell biology during normal development and during abnormal development of stem cell-derived brain tumors. In Drosophila brain development, the proliferative activity of neural stem cells called neuroblasts gives rise to both the optic lobe and the central brain ganglia, and asymmetric cell divisio...

متن کامل

Analysis of neural stem cell self-renewal and differentiation by transgenic RNAi in Drosophila.

The fruit fly, Drosophila melanogaster, has proved to be a useful model organism for studying the biology of neural stem cells. Notably, significant progress has been made in identifying the molecular mechanisms that regulate the asymmetric cell divisions of the neural stem cell-like neuroblasts during brain development. Recently, the emerging technology of genome-wide transgenic RNA interferen...

متن کامل

Drosophila Neuroblast Asymmetric Cell Division: Recent Advances and Implications for Stem Cell Biology

Asymmetric cell division is an evolutionarily conserved mechanism widely used to generate cellular diversity during development. Drosophila neuroblasts have been a useful model system for studying the molecular mechanisms of asymmetric cell division. In this minireview, we focus on recent progress in understanding the role of heterotrimeric G proteins and their regulators in asymmetric spindle ...

متن کامل

Drosophila neural stem cells in brain development and tumor formation.

Neuroblasts, the neural stem cells in Drosophila, generate the complex neural structure of the central nervous system. Significant progress has been made in understanding the mechanisms regulating the self-renewal, proliferation, and differentiation in Drosophila neuroblast lineages. Deregulation of these mechanisms can lead to severe developmental defects and the formation of malignant brain t...

متن کامل

Long-Term Live Cell Imaging and Automated 4D Analysis of Drosophila Neuroblast Lineages

The developing Drosophila brain is a well-studied model system for neurogenesis and stem cell biology. In the Drosophila central brain, around 200 neural stem cells called neuroblasts undergo repeated rounds of asymmetric cell division. These divisions typically generate a larger self-renewing neuroblast and a smaller ganglion mother cell that undergoes one terminal division to create two diffe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 139 23  شماره 

صفحات  -

تاریخ انتشار 2012